

> Protein Marker

Protein Marker is a three-color protein standard with 12 pre-stained proteins covering a wide range molecular weights from 10 to 245 kDa. Proteins are covalently coupled with a blue chromophore except for two reference bands (one green and one red band at 25 kDa and 75 kDa respectively) when separated on SDS-PAGE (Tris-glycine buffer). The Protein Marker is designed for monitoring protein separation during SDS-polyacrylamide gel electrophoresis, verification of Western transfer efficiency on membranes (PVDF, nylon, or nitrocellulose) and for approximating the size of proteins. The ladder is supplied in gel loading buffer and is ready to use.

cat. no.	amount	note
STS-PM	500ul	10-245 KDa

FOR RESEARCH USE ONLY

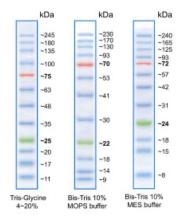
SHIPPING

Shipped on green ice.

STORAGE

Stable for up to 3 months at 4°C. For long term storage, store at -20°C.

SHELF LIFE 12 months


FORM liquid

GUIDE FOR MOLECULAR WEIGHT EXTIMATION (kDa)

Migration patterns of **StoS Protein Marker** in different electrophoresis conditions are listed below:

RECOMMENDED LOAD 5ul per lane

- 3 μl or 5 μl per loading for clear visualization during electrophoresis on 15-well or 10-well mini-gel, respectively.
- 1.5~2.5 µl per well for general Western transferring.
- Apply more for thicker (> 1.5 mm) or larger gel.

% of migration	Tris Glycine Gel						4-12% Bis Tris Gel		3-8% Tris Acetate	EVOgel	
0 % —	6 %	8 %	10 %	12 %	14 %	16 %	4-20 %	MOPS	MES	TA	TG
10 % — 20 % — 30 % — 40 % — 60 % — 70 % — 90 % — 100 %	245 180 135 100 75 63	245 180 135 100 75 63 48	245 180 135 100 75 63 48 35 25 20	245 180 135 63 48 35 25 20 17	245 180 135 100 76 63 48 35 25 20 17	25 20 17	245 180 135 100 75 63 48 35 25 20 17	230 170 130 93 70 53 41 30 22 18 14 9	240 165 ₁₂₅ 93 72 57 42 31 24 18 15 8	235 165 120 100 70 55 45 30 27 18	240 180 180 95 95 72 57 45 36 26 23 19

Note. The apparent molecular weight of each protein (kDa) has been determined by calibration against an unstained protein ladder in each electrophoresis condition.